Matrices Cheat Sheet II

Determinant of a Matrix

The determinant of a matrix is a scalar value which can be calculated from a square matrix. For a matrix A, the determinant can be denoted by det (A), det A, |A| or Δ .

2×2 Matrices

For a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

|A| = ad - bc

The determinant of a matrix represents the area scale factor of the transformation. The area of the image can be found by multiplying the area of the object by the determinant. A determinant of 0 shows that the transformation maps to an image with an area of 0. This means that the transformation maps all points to a straight line, except in a special case where the zero matrix maps all points to the origin. If the determinant is negative, it shows that the order of vertices has been reversed.

Example 1: An object with an area of 4 cm^2 is transformed by the matrix $\begin{bmatrix} 4 & 3\\ 10 & 6 \end{bmatrix}$. Find the area of the image after transformation

Find the determinant from the matrix.	$ad - bc = (4 \times 6) - (3 \times 10)$
	= 24 - 30
	= -6
	č
Multiply the determinant with the original area.	$-6 \times 4 = -24$
A second second because the second	242
An area cannot be negative so ignore the negative	24cm ²
cian	
Sigii.	

3×3 Matrices (A Level Only)

The determinant for a 3 × 3 matrix can also be denoted as $|a \ b \ c|$. For a matrix $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$

 $|A| = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_1 \\ b_3 & c_2 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$

- $\begin{bmatrix} b_2 & c_2 \\ b_3 & c_3 \end{bmatrix}$ is known as the submatrix of a_1 and is obtained from deleting the row and column which a_1 is in.
- The minor of a_1 is the determinant of its submatrix, which is $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$
- The cofactor of a_1 is given by its minor multiplied by $(-1)^{i+j}$, where i and j are the row and column numbers which a_1 is in. Generally, a cofactor is a minor with the corresponding sign:

$$\begin{vmatrix} + & - \\ - & + \\ + & - \\ +$$

The formula above is the sum of the product of values in the first column with their cofactors. ٠ The same determinant can be obtained by expanding any row or column using the same method. •

The determinant of a 3×3 matrix is also its volume scale factor. A negative determinant shows that the orientation of the object is reversed after transformation.

Example 2: Find the determinant of	1 5 2	8 1 7	1 4 . Hence comment on the orientation and volume of the object	ct
after transformation.				

Find the determinant from the matrix.	$ a b c = 1 \begin{vmatrix} 1 & 4 \\ 7 & 2 \end{vmatrix} - 5 \begin{vmatrix} 0 & 1 \\ 7 & 2 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 7 & 2 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix}$ = 1(1 × 2 - 4 × 7) - 5(8 × 2 - 1 × 7) + 2(8 × 4 - 1 × 1) = (-26) - 5(9) + 2(31) = -9
The sign represents the orientation of the image and the value represents the volume scale factor.	The image will have a volume which is 9 times the original volume. The negative sign shows that the orientation is reversed.

Inverse of a Matrix

An inverse matrix is similar to the reciprocal used for scalars and is used to reverse matrix multiplication. For a square matrix A, its inverse is denoted by A^{-1} . When a matrix is multiplied by its inverse, no matter the order, the product is always the identity matrix, I.

 $AA^{-1} = A^{-1}A = I$

Not all matrices have an inverse. These are called singular matrices and have a determinant of 0.

Example 3: Given that A is not a singular matrix and AX = B, find X.

Pre-multiply both sides of the equation by A^{-1} .	$A^{-1}AX = A^{-1}B$
Substitute $A^{-1}A = I$ into the equation.	$IX = A^{-1}B$
Substitute $IX = X$ into the equation.	$X = A^{-1}B$

For XA = B, $X = BA^{-1}$. Notice that the order of multiplying is important here.

For square matrices of the same size,

 $(AB)^{-1} = B^{-1}A^{-1}$

Inverse of Non-singular 2×2 Matrices

For a non-singular 2 × 2 matrix, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, its inverse can be found using the following:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The inverse of a transformation matrix can be used to find the coordinates of the object, when the coordinates of the image are given.

Example 4: Point X is mapped onto point Y(7,2) under the transformation $A = \begin{bmatrix} 6 & 1 \\ 2 & 5 \end{bmatrix}$. Find the coordinates of point X.

Find the determinant of <i>A</i> .	$\det A = (6 \times 5) - (1 \times 2)$ $= 28$
Find the inverse of <i>A</i> .	$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $= \frac{1}{28} \begin{bmatrix} 5 & -1 \\ -2 & 6 \end{bmatrix}$
Since $AX = Y$, it follows that $X = A^{-1}Y$.	$A^{-1} \begin{bmatrix} 7\\2 \end{bmatrix} = \frac{1}{28} \begin{bmatrix} 5 & -1\\-2 & 6 \end{bmatrix} \times \begin{bmatrix} 7\\2 \end{bmatrix}$ $= \frac{1}{28} \begin{bmatrix} (5 \times 7) + (-1 \times 2)\\(-2 \times 7) + (6 \times 2) \end{bmatrix}$ $= \frac{1}{28} \begin{bmatrix} 33\\-2 \end{bmatrix}$ $= \begin{bmatrix} \frac{33}{28}\\-\frac{1}{14} \end{bmatrix}$
Write down the coordinates of <i>X</i> .	$X\left(\frac{33}{28},-\frac{1}{14}\right)$

It is possible to find unknown entries in a matrix when the determinant is given.

Example 5: Given that a matrix

Find the determinant of the m

Equate that to the given dete Solve for possible values of x

Find the possible solutions.

Inverse of 3×3 Matrices (A Level Only)

Transposition is when the rows and columns within a matrix are swapped. The transpose of a matrix A is denoted by A^T . For matrices A and B which have the same size,

The inverse of a 3×3 non-singular matrix A is given by:

Example 6: Find the inverse of t

Find the cofactor of each elem

Transpose C.

Find the determinant. (Given in Find the inverse matrix

AQA A Level Further Maths: Core

$\begin{bmatrix} x & -8 \\ 4 & x+1 \end{bmatrix}$ has a determ	inant of 38, find the 2 possible matrices.
natrix in terms of x.	$ad - bc = (x)(x + 1) - (-8 \times 4)$ = $x^2 + x + 32$
rminant.	$x^2 + x + 32 = 38$
	$x^{2} + x - 6 = 0$ (x + 3)(x - 2) = 0 x = -3 or x = 2
	$\begin{bmatrix} -3 & -8 \\ 4 & -2 \end{bmatrix}$ and $\begin{bmatrix} 2 & -8 \\ 4 & 3 \end{bmatrix}$

$$(AB)^T = B^T A^T$$
$$(A+B)^T = A^T + B^T$$

$$A^{-1} = \frac{1}{\det A} C^T$$

C represents the cofactor matrix, in which each element in the matrix is represented by its cofactor. C^{T} represents that the cofactor matrix is transposed.

the matrix $\begin{bmatrix} 1 & 8 & 1 \\ 5 & 1 & 4 \\ 2 & 7 & 2 \end{bmatrix}$.	
ient.	$C = \begin{bmatrix} \begin{vmatrix} 1 & 4 \\ 7 & 2 \end{vmatrix} & -\begin{vmatrix} 5 & 4 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 5 & 1 \\ 2 & 7 \end{vmatrix} \\ -\begin{vmatrix} 8 & 1 \\ 7 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 8 \\ 2 & 7 \end{vmatrix} \\ \begin{vmatrix} 8 & 1 \\ 1 & 4 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 5 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 8 \\ 5 & 1 \end{vmatrix} \\ = \begin{bmatrix} -26 & -2 & 33 \\ -9 & 0 & 9 \\ 31 & 1 & -39 \end{bmatrix}$
	$C^{T} = \begin{bmatrix} -26 & -9 & 31 \\ -2 & 0 & 1 \\ 33 & 9 & -39 \end{bmatrix}$
example 2)	-9
	$\frac{1}{\det A}C^{T} = -\frac{1}{9} \begin{bmatrix} -26 & -9 & 31\\ -2 & 0 & 1\\ 33 & 9 & -39 \end{bmatrix}$ $= \begin{bmatrix} \frac{26}{9} & 1 & \frac{-31}{9}\\ \frac{2}{9} & 0 & -\frac{1}{9}\\ 11 & 13 \end{bmatrix}$
	$\begin{bmatrix} -{3} & -1 & {3} \end{bmatrix}$

