Matrices Cheat Sheet II

Determinant of a Matrix

The determinant of a matrix is a scalar value which can be calculated from a square matrix. For a matrix A, the determinant can be denoted by $\operatorname{det}(A), \operatorname{det} A,|A|$ or Δ.

2×2 Matrices

For a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,

$$
|A|=a d-b c
$$

The determinant of a matrix represents the area scale factor of the transformation. The area of the image can be found by multiplying the area of the object by the determinant. A determinant of 0 shows that the transformation maps to an image with an area of 0 . This means that the transformation maps all points to a straight line, except in a special case where the zero matrix maps all points to the origin. If the determinant is negative, it shows that the order of vertices has been reversed.
Example 1: An object with an area of $4 \mathrm{~cm}^{2}$ is transformed by the matrix $\left[\begin{array}{cc}4 & 3 \\ 10 & 6\end{array}\right]$. Find the area of the image after transformation.

| Find the determinant from the matrix. |
| :--- | :--- |
| Multiply the determinant with the original area. |
| An area cannot be negative so ignore the negative
 sign. |

$$
\begin{aligned}
a d-b c & =(4 \times 6)-(3 \times 10) \\
& =24-30 \\
& =-6
\end{aligned}
$$

Mulirea cannot be negative so ignore the negative
$-6 \times 4=-24$
$24 \mathrm{~cm}^{2}$

3×3 Matrices (A Level Only)

The determinant for a 3×3 matrix can also be denoted as $|a b c|$. For a matrix $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{1} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$,

$$
|A|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|
$$

- $\left[\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right]$ is known as the submatrix of a_{1} and is obtained from deleting the row and column which $\left[\begin{array}{cc}b_{3} & c_{3} \\ a_{1} \text { is in. }\end{array}\right.$
- The minor of a_{1} is the determinant of its submatrix, which is $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$
- The cofactor of a_{1} is given by its minor multiplied by $(-1)^{i+j}$, where i and j are the row and column numbers which a_{1} is in. Generally, a cofactor is a minor with the corresponding sign: $\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$
- The formula above is the sum of the product of values in the first column with their cofactors. - The formula above is the sum of the product of values in the first column with their cofactors. The determinant of a 3×3 matrix is also its volume scale factor. A negative determinant shows that the orientation of the object is reversed after transformation.
Example 2: Find the determinant of $\left[\begin{array}{lll}1 & 8 & 1 \\ 5 & 1 & 4 \\ 2 & 7 & 2\end{array}\right]$. Hence comment on the orientation and volume of the object after transformation.

Find the determinant from the matrix.

$$
\begin{aligned}
& \begin{array}{l}
=(-26) \\
=-9 \\
\text { mage will ha }
\end{array} \\
& \begin{array}{l}
\text { The image will have a volume which is } 9 \text { times the } \\
\text { original volume. The negative sign shows that the }
\end{array} \\
& \begin{array}{l}
\text { original volume. The ned. } \\
\text { orientation is reversed. }
\end{array}
\end{aligned}
$$

The sign represents the orientation of the image
and the value represents the volume scale factor.

Inverse of a Matrix

An inverse matrix is similar to the reciprocal used for scalars and is used to reverse matrix multiplication. For a square matrix A, its inverse is denoted by A^{-1}. When a matrix is multiplied by its inverse, no matter the order, the product is always the identity matrix, I.

$$
A A^{-1}=A^{-1} A=I
$$

Not all matrices have an inverse. These are called singular matrices and have a determinant of 0 .
Example 3: Given that A is not a singular matrix and $A X=B$, find X
Pre-multiply both sides of the equation by $A^{-1} . \quad A^{-1} A X=A^{-1} B$ Substitute $A^{-1} A=I$ into the equation.
for $X A=B, X=B A^{-1}$. Notice that the order of multiplying is important here.
For square matrices of the same size,

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Inverse of Non-singular $\mathbf{2 \times 2}$ Matrices
For a non-singular 2×2 matrix, $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, its inverse can be found using the following:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The inverse of a transformation matrix can be used to find the coordinates of the object, when the coordinates of the image are given
Example 4: Point X is mapped onto point $Y(7,2)$ under the transformation $A=\left[\begin{array}{ll}6 & 1 \\ 2 & 5\end{array}\right]$. Find the coordinates f poin X.

Find the determinant of A.	$\begin{aligned} \operatorname{det} A & =(6 \times 5)-(1 \times 2) \\ & =28 \end{aligned}$
Find the inverse of A.	$\begin{aligned} A^{-1} & =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right] \\ & =\frac{1}{28}\left[\begin{array}{cc} 5 & -1 \\ -2 & 6 \end{array}\right] \end{aligned}$
Since $A X=Y$, it follows that $X=A^{-1} Y$.	$\begin{aligned} A^{-1}\left[\begin{array}{l} 7 \\ 2 \end{array}\right] & =\frac{1}{28}\left[\begin{array}{cc} 5 & -1 \\ -2 & 6 \end{array}\right] \times\left[\begin{array}{l} 7 \\ 2 \end{array}\right] \\ & =\frac{1}{28}\left[\begin{array}{c} 5 \times 7)+(-1 \times 2) \\ (-2 \times 7)+(6 \times 2) \end{array}\right] \\ & =\frac{1}{28}\left[\begin{array}{c} 33 \\ -2 \end{array}\right] \\ & =\left[\begin{array}{c} \frac{33}{28} \\ -\frac{1}{14} \end{array}\right] \end{aligned}$
Write down the coordinates of X.	$x\left(\frac{33}{28},-\frac{1}{14}\right)$

It is possible to find unknown entries in a matrix when the determinant is fiven.
Example 5: Given that a matrix $\left[\begin{array}{cc}x & -8 \\ 4 & x+1\end{array}\right]$ has a determinant of 38 , find the 2 possible matrices.
\(\left.$$
\begin{array}{|l|c|}\hline \text { Find the determinant of the matrix in terms of } x . & \begin{array}{r}a d-b c=(x)(x+1)-(-8 \times 4) \\
\\
=x^{2}+x+32\end{array}
$$

\hline Equate that to the given determinant. \& x^{2}+x+32=38

x^{2}+x-6=0

(x+3)(x-2)=0\end{array}\right]\)| Solve for possible values of x. | $\left[\begin{array}{cc}-3 & -8 \\ 4 & -2\end{array}\right]$ and $\left[\begin{array}{ll}2 & -8 \\ 4 & 3\end{array}\right]$ |
| :--- | :--- |

Inverse of $\mathbf{3} \times \mathbf{3}$ Matrices (A Level Only)

Transposition is when the rows and columns within a matrix are swapped. The transpose of a matrix A is
denoted by A^{T}. For matrices A and B which have the same size,

$$
\begin{aligned}
(A B)^{T} & =B^{T} A^{T} \\
(A+B)^{T} & =A^{T}+B^{T}
\end{aligned}
$$

The inverse of a 3×3 non-singular matrix A is given by:

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{T}
$$

- C represents the cofactor matrix, in which each element in the matrix is represented by its cofactor.
C^{T} represents that the cofactor matrix is transposed.
Example 6: Find the inverse of the matrix $\left[\begin{array}{lll}1 & 8 & 1 \\ 5 & 1 & 4 \\ 2 & 7 & 2\end{array}\right]$.

